Analisis Perbaikan Profil Tegangan 20 kV pada Jaringan Distribusi Studi Kasus Perbaikan Profil Tegangan Ujung Penyulang BTL02 Gardu Induk Batulicin dengan Pembangunan Penyulang 20 kV Baru dan Pemasangan Kapasitor

Afrias Evindra¹; Abdul Azis¹; Aris Aprianto^{1*)}

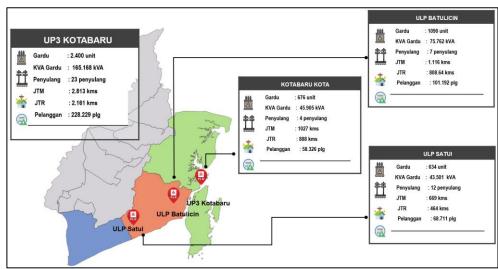
1. PT PLN (Persero) UP3 Kotabaru, Jl. H. Hasan Basri No.4, Semayap, Pulau Laut Utara, Kotabaru, Kalimantan Selatan 72113, Indonesia

*)Email: aris.aprianto@pln.co.id

ABSTRACT

The voltage profile in the distribution network is very important so that the power system is reliable and delivered with good quality. If the voltage profile in the power system does not meet the applicable standards, this will cause poor quality and continuity of the distribution network. If not resolved quickly, this can result in system failure. One of the causes of a poor voltage profile in a system is too long distribution lines. Long distribution networks can also cause large capacitance in the lines with air as the medium. With the capacitance in the line, reactive current will flow along the line and cause a drop in voltage and power losses in the system. In this paper, we will discuss improving the voltage profile on distribution lines that have end voltages that do not comply with PLN standards by planning the construction of a new 20 kV distribution line from the substation and installing capacitors as reactive power compensators in the system. These repair options will be compared by considering the profile of the system, savings, and financial feasibility when the repair options are implemented.

Keywords: Voltage drop, 20 kV distribution network, capacitor, financial analysis


ABSTRAK

Pada jaringan distribusi tenaga listrik, profil tegangan memegang peranan krusial dalam menjaga kualitas dan keandalan sistem tenaga listrik. Ketidaksesuaian profil tegangan terhadap standar yang berlaku dapat mengakibatkan penurunan kualitas dan kontinuitas jaringan distribusi. Jika masalah ini tidak segera ditangani, dampaknya bisa mencakup kegagalan pada sistem. Salah satu faktor penyebab buruknya profil tegangan pada sistem adalah panjangnya saluran distribusi. Saluran distribusi yang terlalu panjang dapat mengakibatkan penurunan tegangan pada sistem, terutama pada ujung saluran. Selain itu, jaringan distribusi yang memanjang juga berpotensi menyebabkan terjadinya kapasitansi yang signifikan pada saluran udara. Keberadaan kapasitansi pada saluran ini akan menghasilkan arus reaktif yang mengalir sepanjang saluran dan berkontribusi pada penurunan tegangan dan kerugian daya. Makalah ini akan membahas strategi perbaikan profil tegangan pada saluran distribusi yang memiliki tegangan ujung di luar standar yang ditetapkan oleh PLN. Pendekatan yang diusulkan mencakup perencanaan pembangunan jaringan baru berbasis 20 kV dari gardu induk, serta pemasangan kapasitor sebagai kompensator daya reaktif dalam sistem. Kami akan membandingkan opsi perbaikan ini dengan mempertimbangkan profil tegangan sistem, penghematan dalam hal kerugian daya, dan aspek-aspek kelayakan finansial saat mengimplementasikan opsi perbaikan ini.

Kata kunci: Tegangan Jatuh, Jaringan 20 kV, Kapasitor, Kajian Finansial

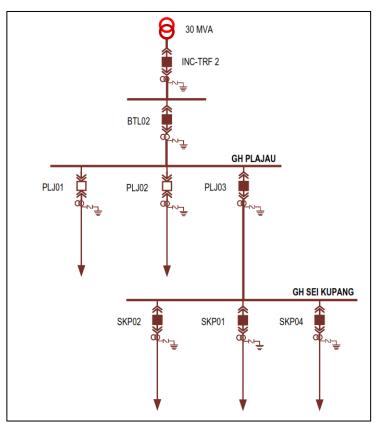
PENDAHULUAN

PLN UP3 Kotabaru merupakan bagian dari PT PLN Unit Induk Distribusi Kalimantan Selatan dan Tengah. Luas wilayah pelayanan UP3 Kotabaru yaitu 15.653 km2 dari Wilayah Provinsi Kalimantan Selatan sebesar 38.744 km2 menaungi 3 (tiga) Kabupaten yaitu Kabupaten Tanah Laut, Kabupaten Tanah Bumbu dan Kabupaten Kotabaru. Unit Layanan yang bertanggung jawab untuk area ini terdapat 2 Unit Layanan Pelanggan (ULP), yaitu ULP Satui, ULP Batulicin, dan Pelayanan Kotabaru.

Gambar 1. Wilayah Layanan dan Data Pengusahaan PT PLN (Persero) UP3 Kotabaru

Sistem Kelistrikan di Kabupaten Tanah Bumbu bagian utara dan Kabupaten Kotabaru daratan hampir secara menyeluruh disuplai dari Gardu Induk Batulicin dan terdapat beberapa sistem isolated. Beban puncak Gardu Induk Batulicin mencapai 30,64 MW. Gardu Induk Batulicin menyuplai 7 penyulang dengan panjang total sampai dengan 1.118 kms. Panjangnya jaringan ini menyebabkan teganga asset jaringa strik yang se akin berkura uplai ke pela

	GI Batulicin	Panjang	Jumlah	Panjang Penghantar (kms)					
	Tabel 1. Data Aset Penyulang Gardu Induk Batulicin								
a	anggan yang bera	ada di ujung pe	enyulang.						
ra	ang dan tegangar	ı ujung semaki	n rendah sel	ningga mengurangi keandalan pasokan lis	trik suj				
S	emakin meningk	at setiap tahui	nnya. Kondi	isi ini menyebabkan surplus daya mamp	u sema				
a	an untuk melayan	i pelanggan ju	ga terus dila	kukan untuk mengimbangi kebutuhan en	ergi lis				
3	an jatuh di mas	ing-masing uji	ung penyula	ang. Seiring berjalannya waktu penamba	ahan as				


GI Batulicin 2 x 30 MVA	Panjang Penyulang	Jumlah Trafo	Panjang Penghantar (kms)				
2 x 30 MIVA	(kms)	1 raio	3x240	3x150	3x70		
BTL 01	28.16	118	12.58	-	15.59		
BTL 02	9.22	2	9.17	0.05	=		
BTL 03	54.79	58	0.21	44.14	10.45		
BTL 04	21.17	-	21.17	-	-		
BTL 05	198.93	185	1.95	0.05	195.91		
BTL 06	40.34	52	4.15	=	36.19		
BTL 07	44.70	103	6.07	-	38.63		

Penyulang BTL-02 memiliki panjang 9,22 kms dari GI Batulicin ke GH Plajau, dibagi menjadi 3 penyulang yaitu penyulang PLJ-01, PLJ-02, dan PLJ-03.

Tabe	1 2. Data	Aset Pe	enyulang	Lanjı	ıtan BT	L-02

Penyulang	Nama	Panjang Penyulang	Jumlah	Panjang Penghantar (kms)			
Induk	Penyulang	(kms)	Trafo	3x240	3x70	3x35	
D/TL 02/	PLJ 01	0.54	4	-	0.54	-	
BTL02/ GH Plajau	PLJ 02	2.59	12	-	2.42	0.17	
OH Hajau	PLJ 03	222.09	183	40.32	181.77	-	

Berikut adalah gambaran *single line diagram* khusus untuk penyulang BTL02 dan penyulang penyulang setelahnya.

Gambar 2. Single Line Diagram Penyulang BTL02

Penyulang PLJ-03 sepanjang 222,09 kms dari gardu hubung sampai ke gardu hubung berikutnya yaitu GH Sei Kupang yang kemudian dipecah menjadi 3 penyulang sebagai berikut.

Tabel 3. Data Aset Penyulang Lanjutan BTL-02

Penyulang Induk	Nama Panjang Penyulang		Jumlah Trafo	Panjang Peng	ghantar (kms)			
Induk	1 chydiang	(kms)	Trait	3x240	3x70			
PLJ03/	SKP 01	134.29	53	2.40	131.89			
GH Sei	SKP 02	12.53	16	1	12.53			
Kupang	SKP 04	87.42	41	-	87.42			

Dengan kondisi jaringan yang dominan radial dan rata-rata panjang penyulang sekitar ± 100 kms, secara teknis dapat menyebabkan terjadi nya drop tegangan yang melebihi batasan tingkat mutu pelayanan (TMP) yaitu +5% dan -10% dan terjadi rugi – rugi jaringan (susut) distribusi.

Penyulang BTL02 dan perpanjangannya merupakan penyulang yang memiliki kondisi profil tegangan yang tidak sesuai dengan standar PLN. GH Sei Kupang, merupakan GH paling ujung dari perpanjangan penyulang BTL02, saat ini memiliki tegangan incoming sebesar 16,4 kV. Lokasi GH Sei Kupang berada setelah penyulang BTL02 yang memiliki panjang penyulang 9,22 kms dan PLJ03 yang mimiliki panjang 222,09 kms. Dengan jauhnya lokasi ini menyebabkan tegangan jatuh yang signifikan di GH Sei Kupang.

LANDASAN TEORI

2.1. Tegangan Jatuh

Tegangan jatuh merupakan besarnya tegangan yang hilang pada suatu penghantar atau selisih antara tegangan pada titik kirim dan tegangan pada titik terima. Tegangan jatuh pada saluran tenaga listrik berbandin lurus dengan panjang saluran dan beban, namun berbanding terbalik dengan luas penampang dari konduktor penghatar.

Besarnya tegangan jatuh ditanyatakan dalam volt atau persen (%). Sedangkan untuk batas maksimal dan minimal dari tegangan jatuh ini ditentukan oleh penyedia tenaga listrik pada suatu negara. PLN mengatur batas tegangan jatuh ini pada SPLN Nomor 72 Tahun 1987 dengan nilai +5% dan -10% dari tegangan kerja.

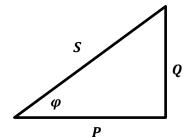
Definisi simbol dan besaran:

Р Beban (watt) Daya reaktif (VAR)

VTegangan saluran (Volt) Q_C Kapasitas dari kapasitor (VAR)

Ι Arus beban (A) $%V_{D}$ Tegangan jatuh (%)

Konduktivitas bahan penghantar L Panjang saluran (m)

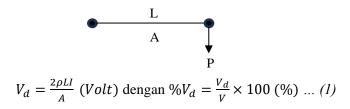

 $(\Omega^{-1}m^{-1})$

Resistivitas bahan penghantar Α Luas penampang saluran (mm²)

 (Ωm)

Tegangan jatuh (Volt) V_D

2.2. Perhitungan Tegangan Jatuh

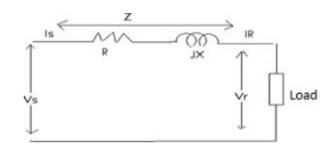

$$P = S \cos \varphi$$

$$Q = S \sin \varphi$$

$$\tan \varphi = \frac{Q}{P}$$

2.2.1. Sistem Satu Fasa, $Cos \varphi \approx 1$

Besarnya tegangan jatuh pada saluran dengan beban I, panjang L, dan luas penampang A dapat dihitung dengan menggunakan persamaan berikut.


2.2.2. Sistem Tiga Fasa dengan $Cos \varphi$

Besarnya tegangan jatuh pada saluran dengan beban I, panjang L, dan luas penampang A dapat dihitung sebagai berikut

$$V_d = \sqrt{3} \frac{\rho LI}{A} \cos \varphi \text{ (Volt) dengan } \% V_d = \frac{V_d}{V} \times 100 \text{ (\%) } \dots \text{ (2)}$$

2.2.3. Sistem Tiga Fasa Pada Jaringan

Pada jaringan distribusi terdapat beban resistif dan beban induktif. Oleh karena itu perhitungan tegangan jatuh pada sistem distribusi akan dipengaruhi juga oleh nilai reaktansi dari jaringan.

$$\begin{aligned} V_{S} &= V_{r} + ZI_{r} \\ V_{S} &= V_{r} + (R + jX_{Total})I_{r} = V_{r} + \frac{(R + jX_{Total})S^{*}}{V_{r}} \\ V_{S} &= V_{r} + \frac{(R + jX_{Total})(P_{r} - jQ_{r})}{V_{r}} = V_{r} + \frac{(P_{r}R + Q_{r}X_{Total})}{V_{r}} \end{aligned}$$

Dengan

$$V_d = V_s - V_r$$

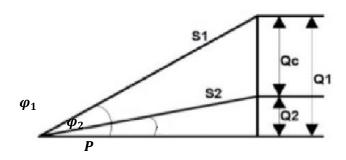
Maka

$$V_d = \frac{(P_r R + Q_r X_{Total})}{V_r}$$

Pada sistem tiga fasa untuk pada sistem distribusi dengan menggunakan konduktor sebagai penghantar dengan panjang saluran L dan luas penampang konduktor sebesar A, maka persamaan tegangan drop diatas menjadi seperti berikut.

$$\begin{split} V_d &= \sqrt{3} \, \rho L \frac{(P_r R \, + \, Q_r X_{Total} \,)}{A \, V_r} \, \, Volt = \, \sqrt{3} \, \rho P_r L \frac{(R \, + \, X_{Total} \, tan \, \varphi)}{A \, V_r} \, \, Volt \\ V_d &= \sqrt{3} \, \rho I_r L \frac{(R \, + \, X_{Total} \, tan \, \varphi)}{A} \, \, Volt ... \, (3) \end{split}$$

$$\%V_d = \frac{V_d}{V_r} \times 100 \% = \sqrt{3}\rho P_r L \frac{(R + X \tan \varphi)}{A V_r^2} \times 100 \% \dots (4)$$


dengan

X: Reaktansi penghantar (Ωm)

R: Resistansi penghantar (Ωm)

2.3. Kapasitor Sebagai Kompensator Daya Reaktif

Beban pada sistem distribusi sebagian besar bersifat induktif yang berasal dari trafo dan saluran, dan peralatan motor yang konsumsi daya reaktif. Hal ini menyebabkan terjadinya penurunan profil tegangan pada sistem distribusi dan peningkatan susut jaringan.

$$Q_C = Q_1 - Q_2$$

$$Q_C = P_1 \tan \varphi_1 - P_2 \tan \varphi_2$$

Dengan $P_1 = P_2$, maka

$$Q_C = P(\tan \varphi_1 - \tan \varphi_2) \dots (5)$$

2.4. Kapasitor Sebagai Perbaikan Tegangan Jatuh

Beban pada sistem distribusi sebagian besar bersifat induktif yang berasal dari trafo dan saluran, dan peralatan motor yang konsumsi daya reaktif. Hal ini menyebabkan terjadinya penurunan

Untuk mengetahui tegangan jatuh setelah ditambahkan nya kapasitor, dengan menggunakan persamaan (3) maka didapatkan

$$\Delta V_d = V_{d1} - V_{d2}$$

$$= \sqrt{3} I_r L (R + X_{Total} \tan \varphi)$$

$$= \sqrt{3} P_1 L \frac{(R + X_{Total} \tan \varphi_1)}{V_r} - \sqrt{3} P_2 L \frac{(R + X_{Total} \tan \varphi_2)}{V_r}$$

$$= P_r \text{ make}$$

Dengan $P_1 = P_2$, maka

$$= \sqrt{3} P_1 L \left[\frac{(R + X_{Total} tan\varphi_1) - (R + X_{Total} tan\varphi_2)}{V_r} \right]$$
$$= \sqrt{3} P_1 X_{Total} L \left[\frac{(tan \varphi_1 - tan \varphi_2)}{V_r} \right]$$

Dengan mensubtitusikan persamaan (5), maka didapatkan perubahan tegangan jatuh setelah pemasangan kapasitor sebagai berikut.

$$= \sqrt{3} X_{Total} L \frac{Q_C}{V_r}$$

$$\Delta V_d = \sqrt{3} \frac{X_{Total} Q_C L}{V_r} \dots (6)$$

Namun perlu diperhatikan bahwa dalam pemasangan kapasitor perlu dibatasi dengan limitasi kapasitas dari kapasitor hanya boleh maksimal atau lebih kecil dari *demand* daya reaktif pada sistem. Karena ketika kapasitas yang dipasang terlalu besar, maka susut pada jaringan akan terjadi karena arus reaktif yang kembali mengalir disebabkan oleh kapasitas kapasitor yang terlalu besar, sistem yang awalnya *lagging* menjadi *leading*.

2.5. Perhitungan Susut

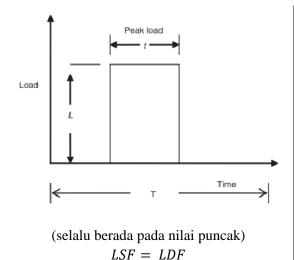
2.5.1. Load Factor (LDF)

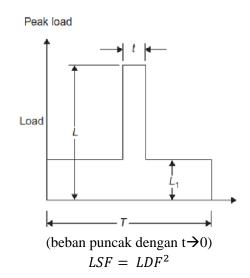
Load Factor atau Faktor Beban adalah rasio antara beban rata-rata dan beban puncak pada suatu periode waktu tertentu.

$$Load\ Factor\ (LDF) = \frac{Average\ load}{Peak\ load}$$

2.5.2. *Loss Factor* (*LSF*)

Loss Factor atau Faktor Susut adalah rasio antara rata-rata susut dan susut maksimum pada suatu periode waktu tertentu.

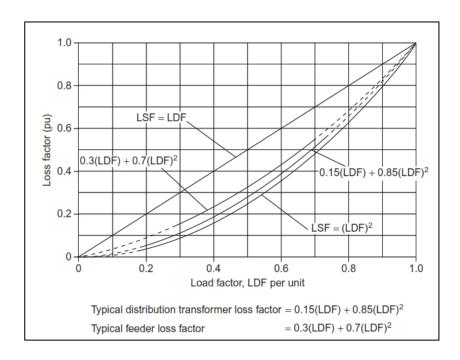

$$Loss Factor (LSF) = \frac{Average \ loss}{Peak \ loss}$$


Karena susut proporsional dengan kuadrat dari beban, maka

$$Loss \ Factor \ (LSF) = \frac{Average \ loss}{Peak \ loss} = \frac{Average \ (load)^2}{Maximum \ (load)^2}$$

2.5.3. Hubungan Load Factor (LDF) dan Loss Factor (LSF) pada Beban Sistem

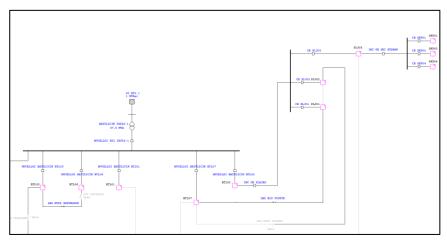
Tipikal kurva beban puncak dengan t maksimum dan t minimum pada sistem dapat dilihat pada gambar berikut


Dengan

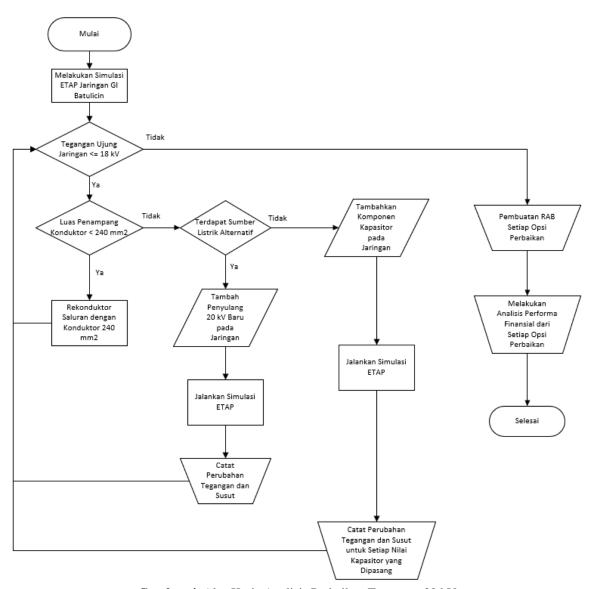
L = Peak Load Demand L1 = Normal Load Demand

t = Periode waktu beban puncak

T = Periode waktu total beban


Berikut kurva hubungan antara *Loss Factor* dan *Load Factor* pada sistem distribusi dengan variasi periode (t) waktu beban puncak pada suatu sistem.

Untuk sistem distribusi, digunakan $LSF = 0.3(LDF) + 0.7(LDF)^2$ sebagai perhitungan susut pada sistem.


METODE/PERANCANGAN PENELITIAN

Metode penelitian yang digunakan untuk studi kasus perbaikan tegangan ujung penyulang pada sistem distribusi ini adalah menggunakan aplikasi analisis sistem tenaga yaitu ETAP. ETAP (Electric Transient Analysis Program) adalah aplikasi yang digunakan untuk menganalisis suatu sistem tenaga. Dengan menggunakan ETAP, dapat dilihat respon dari jaringan ketika dilakukan perubahan komponen maupun topologi jaringan. Respon yang dimaksud ini bermacam-macam, tergantung analisis simulasi yang dijalankan pada aplikasi ETAP. Untuk mengetahui besar tegangan jatuh pada jaringan, analisis yang digunakan pada aplikasi ETAP adalah simulasi analisis aliran daya. Oleh karena itu sebelum melakukan analisis aliran daya pada jaringan GI Batulicin, maka sistem perlu dimodelkan terlebih dahulu dengan menggunakan ETAP

Gambar 3. Model ETAP GI Batulicin, Penyulang BTL02, dan Penyulang Lanjutan BTL02

Untuk melakukan perhitu Alur pekerjaan pada studi ini digambarkan pada flowchart berikut.


Gambar 4. Alur Kerja Analisis Perbaikan Tegangan 20 kV

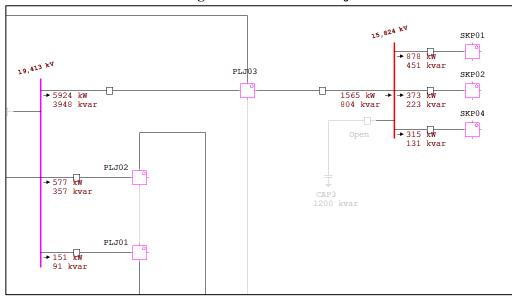
3. HASIL DAN PEMBAHASAN

3.1. Pembangunan Jaringan 20 kV Evakuasi Daya GI Tarjun untuk pecah beban Penyulang PLJ 03

Pada Tahun 2023, PT PLN (Persero) membangun Gardu Induk baru yakni Gardu Induk Tarjun yang berlokasi di Kecamatan Kelumpang Hilir, Kabupaten Kotabaru. GI Tarjun mempunyai kapasitas sebesar 30 MVA dan akan digunakan untuk memasok kebutuhan listrik Kawasan Industri Tarjun sebesar 26 MVA melalui 4 penyulang. Dengan kapasitas 30 MVA yang digunakan untuk melayani kebutuhan kawasan industri sebesar 26 MVA, maka masih terdapat sisa kapasitas sebesar 4 MVA pada GI Tarjun yang dapat dimanfaatkan.

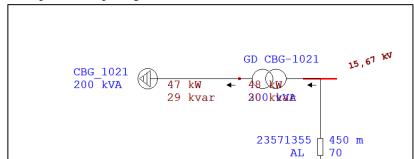
Kapasitas 4 MVA ini dapat digunakan sebagai alternatif solusi untuk pembangunan jaringan 20 kV baru untuk mengatasi kualitas tegangan yang buruk pada penyulang lanjutan dari BTL02.

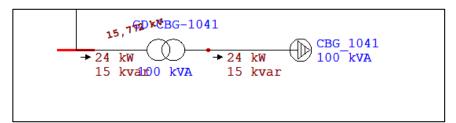
Gambar 5. Lokasi Pembangunan GI Tarjun


Pembangunan dilakukan dengan cara menambahkan penyulang 20 kV di GI Tarjun (pada Gambar 5 ditandai dengan warna hitam) kemudian penyulang 20 kV yang baru ini akan diinterkoneksikan dengan penyulang PLJ03 yang berada di dekat lokasi pembangunan GI Tarjun (pada Gambar 5 ditandai dengan warna merah). Di sisi barat laut penyulang eksisting akan dilakukan perpanjangan jalur 20 kV di Desa Mandala (pada Gambar 5 ditandai dengan garis berwarna biru) sebagai support untuk jalur 20 kV yang baru.

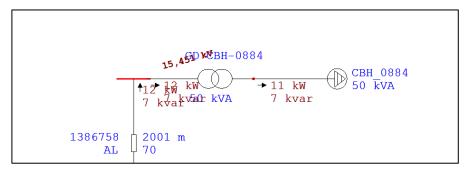
Gambar 6. Rencana Pembangunan Jaringan 20 kV Evakuasi Daya GI Tarjun untuk Pecah Beban Penyulang PLJ03. Jalur Interkoneksi di depan GI (atas) dan Jalur Penopang di Desa Mandala (bawah)

3.1.1. Analisis Aliran Daya Pada Jaringan 20 kV Evakuasi GI Tarjun


a. Sebelum Interkoneksi Jaringan 20 kV Baru GI Tarjun


Gambar 7. Kondisi Normal GH Sei Kupang

Simulasi ETAP akan dilakukan dengan menggunakan pendekatan beban pada Gardu Induk Batulicin dengan input pembebanan dari masing-masing trafo pada ETAP sebesar 45%.


GH Sei Kupang merupakan GH yang memiliki profil tegangan dibawah standar dari PLN dan merupankan GH paling jauh dari penyulang BTL02. Dengan menjalankan simulasi analisis aliran daya, perkiraan tegangan pada ujung-ujung jaringan pada penyulang BTL02 dapat dilihat. Sebalum interkoneksi jaringan 20 kV dari GI Tarjun untuk pecah beban PLJ03, tegangan pada GH Sei Kupang dan tegangan ujung masing-masing penyulang SKP01, SKP02, dan SKP03 dapat dilihat pada gambar berikut.

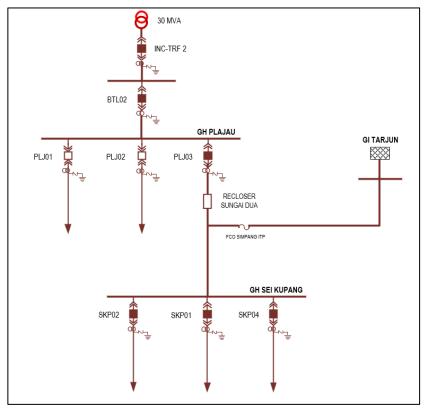
Gambar 8. Tegangan Terima di Ujung SKP01 Sebelum Interkoneksi Jaringan 20 kV dari GI Tarjun

Gambar 9. Tegangan Terima di Ujung SKP02 Sebelum Interkoneksi Jaringan 20 kV dari GI Tarjun

Gambar 10. Tegangan Terima di Ujung SKP04 Sebelum Interkoneksi Jaringan 20 kV dari GI Tarjun

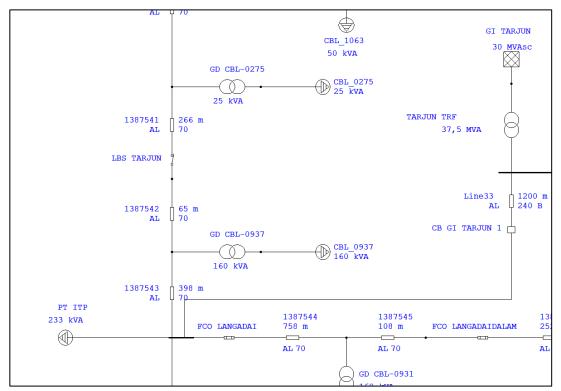
Tabel 4. Tegangan Ujung Pada GI Batulicin Sebelum Interkoneksi Jaringan 20 kV dari GI Tarjun

Penyulang	Tegangan Ujung (kV)
SKP01	15.67
SKP02	15.772
SKP04	15.451


Susut GI Batulicin sebelum interkoneksi jaringan 20 kV dari GI Tarjun di PLJ03 bernilai sebesar 4.136 MW.

Tabel 5. Susut GI Batulicin Sebelum Interkoneksi Jaringan 20 kV dari GI Tarjun

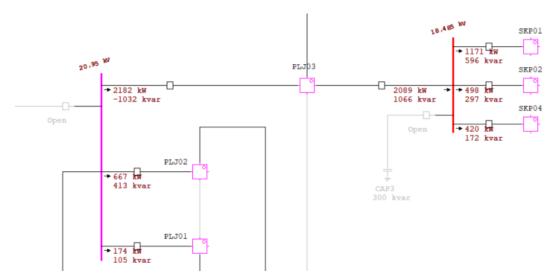
Study ID	Normal
Study Case ID	LF
Data Revision	Base
Configuration	Normal
Loading Cat	45
Generation Cat	Design
Diversity Factor	Normal Loading
Buses	4563
Branches	4558
_	
Generators	0
Power Grids	5
Loads	1702
Load-MW	54,739
Load-Mvar	37,734
Generation-MW	54,739
Generation-Mva	37,734
Loss-MW	4,136
Loss-Mvar	6,417
Mismatch-MW	0
Mismatch-Mvar	0


b. Setelah Interkoneksi Jaringan 20 kV Baru GI Tarjun

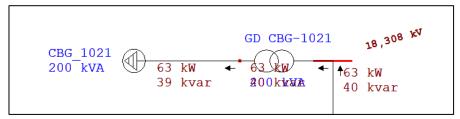
Jaringan 20 kV Evakuasi Daya GI Tarjun akan memecah beban eksisting dari penyulang PLJ03. Jaringan yang baru akan diinterkoneksikan pada PLJ03 sesuai penjelasan Gambar 5. Gambar 11 menunjukan SLD simpel saat operasi jaringan 20 kV evakuasi daya GI Tarjun beroperasi

Gambar 11. Simple SLD Interkoneksi Jaringan 20 kV Evakuasi Daya GI Tarjun

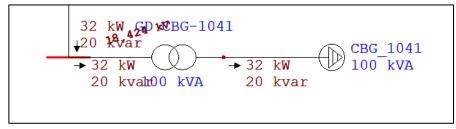
Sementara itu *recloser* yang berada di Sungai Dua (lokasi Sungai Dua berada di kiri bawah Gambar 5) akan dibuka sehingga jaringan 20 kV dari GI Tarjun ini akan menjadi pangkal.


Gambar 12. Single Line Diagram Interkoneksi Jaringan 20 kV dari GI Tarjun

Jaringan 20 kV dari GI Tarjun akan di-interkoneksikan ke PLJ03 setelah Trafo CBL-0937.



Gambar 13. Jalur Jaringan 20 kV Baru dari GI Tarjun


Setelah dilakukan simulasi aliran daya pada aplikasi ETAP, didapatkan tegangan pada GH Sei Kupang dan tegangan ujung penyulang SKP01, SKP02, dan SKP04 sebagai berikut.

Gambar 14. Tegangan Pada GH Sei Kupang Setelah Interkoneksi Jaringan 20 kV dari GI Tarjun

Gambar 15. Tegangan Terima di Ujung SKP01 Setelah Interkoneksi Jaringan 20 kV dari GI Tarjun

Gambar 16. Tegangan Terima di Ujung SKP02 Setelah Interkoneksi Jaringan 20 kV dari GI Tarjun

```
18,050 kg BH-0884

18,050 kg BH-0884

15 kg kg ArkVA 9 kvar

1386758 2001 m
AL 70
```

Gambar 17. Tegangan Terima di Ujung SKP04 Setelah Interkoneksi Jaringan 20 kV dari GI Tarjun

Tabel 6. Tegangan Ujung Pada GI Batulicin Setelah Interkoneksi Jaringan 20 kV dari GI Tarjun

Penyulang	Tegangan Ujung (kV)
SKP01	18.302
SKP02	18.424
SKP04	18.059

Susut pada sistem setelah operasi jaringan 20 kV dari GI Tarjun adalah 3.939 MW. Berikut tampilan hasil simulasi dengan operasi jaringan 20 kV dari GI Tarjun.

Tabel 7. Susut Sistem Setelah Interkoneksi Jaringan 20 kV dari GI Tarjun

Study ID	GI TARJUN ON			
Study Case ID	LF			
Data Davision	B			
Data Revision	Base			
Configuration	GITARJUN_ON			
Loading Cat	45			
Generation Cat	Design			
Diversity Factor	Normal Loading			
Buses	4562			
_	4558			
Branches				
Generators	0			
Power Grids	5			
Loads	1702			
Load-MW	56,452			
Load-Myar	37,381			
Generation-MW	56,452			
Generation-Mva	37,381			
Loss-MW	3,939			
Loss-Mvar	4,883			
Mismatch-MW				
_				
Mismatch-Mvar	0			

3.1.2. Perhitungan Perubahan Susut Setelah Interkoneksi Jaringan 20 kV Baru GI Tarjun

Dari hasil simulasi dapat dihitung nilai penghematan yang didapatkan dari pembangunan jaringan 20 kV dari GI Tarjun. Berikut hasil perhitungan sebelum dan setelah operasi jaringan 20 kV dari GI Tarjun. Dengan operasi jaringan 20 kV dari GI Tarjun untuk melakukan perbaikan tegangan di GH Sei Kupang, didapatkan saving kWh sebesar 82.108 kWh/bulan atau 985.300 kWh/tahun.

Tabel 8. Perhitungan Saving dari Interkoneksi Jaringan 20 kV dari GI Tarjun

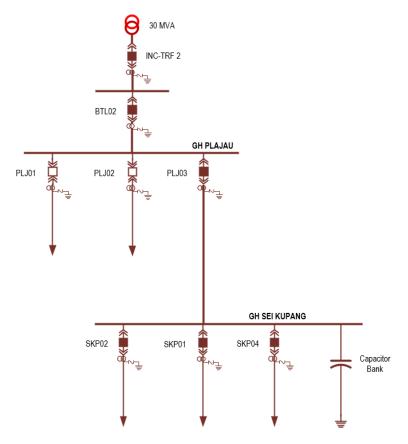
	ving dari interkoneksi saringar				
Parameter	Sebelum Operasi	Setelah Operasi			
Perhitungan	Seberam Operasi	Settlan Operasi			
Load (MW)	54,74	56,45			
Loss (MW)	4,14	3,94			
Load Factor (LDF)	0,72	0,72			
Loss Factor (LSF)	0,58	0,58			
$(LSF = 0.3(LDF) + 0.7(LDF)^{2})$ Parioda Waktu (24 jam v 20)					
Periode Waktu (24 jam x 30 hari)	720	720			
Load (MWh)	28,377	29,265			
Loss (MWh)	1.724	1.642			
Loss (kWh)	1.723.858	1.641.750			
Persentase (%)	6,07%	5,61%			
Saving kWh per bulan	82.10	08 kWh			
Saving kWh per tahun	985.3	800 kWh			
Saving Rp per tahun					
(Saving kWh x Harga Rata-					
Rata Transfer Price	Rp 683.962.466 /tahun				
Rp/kWh UID KSKT Maret					
2023*). Harga rata-rata					
transfer price					
Rp 694.17/kWh					

^{*}Mengacu ke surat No: 18104/KIT.00.01/F01030000/2023 perihal Harga Transfer TSA (Transmission Service Agreement), dan PSA (Power Sales Agreement) Tahun 2023 di Sistem Kalimantan dari Direktur Manajemen Pembangkitan PT PLN (Persero)

3.1.3. Biaya Investasi Jaringan 20 kV dari GI Tarjun

Untuk pembangunan Jaringan 20 kV dari GI Tarjun, Rancangan Anggaran Biaya menggunakan sket pada Gambar 6 sebagai acuan. Dari GI penyulang akan menggunakan Saluran Kabel Tegangan Menengah (SKTM), kemudian saluran akan keluar dari GI melalui cable duct, SKTM kemudian menuju Riser Pole untuk selanjutnya menjadi Saluran Udara Tegangan Menengah (SUTM). Penghantar SUTM akan menggunakan konduktor All Alumunium Alloy Conductor-Sheated (AAAC-S) dengan luas penampang 240mm² dan ditopang oleh tiang beton dengan spesifikasi tiang dengan ketinggian 14 meter dan daya dukung 350 daN.

Berikut rekapitulasi rencana anggaran biaya Jaringan 20 kV Evakuasi Daya GI Tarjun.

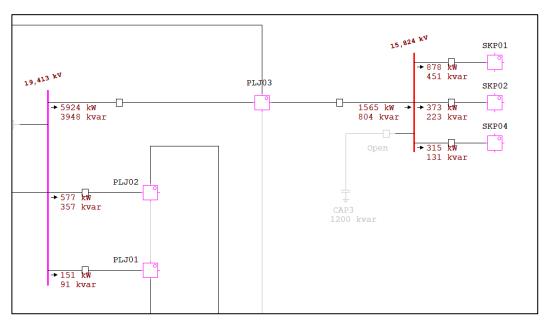

Pekerjaan	Total Biaya
Jaringan 20 kV Evakuasi Daya GI Tarjun GI Tarjun	Rp 1.809.759.482,00
Perpanjangan Jaringan 20 kV di Desa Mandala	Rp 767.161.006,00
Total	Rp 2.576.920.388,00

Tabel 9. Total Biaya Investasi Untuk Pembangunan Jaringan 20 kV Evakuasi Daya GI Tarjun

3.2. Pemasangan Kapasitor Pada Jaringan TM

3.2.1. Analisis Aliran Daya Pemasangan Kapasitor Pada Jaringan

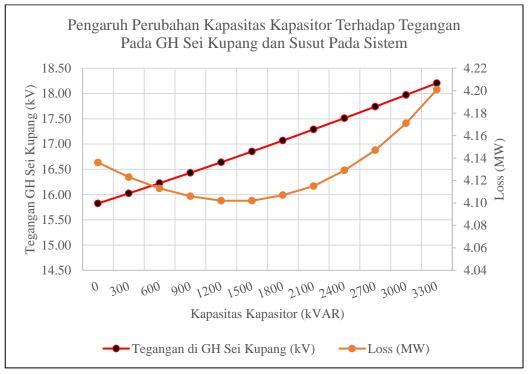
Selain pembangunan jaringan 20 kV baru dari GI Tarjun, pemasangan kapasitor juga dapat digunakan untuk perbaikan tegangan pada jaringan. Tegangan pada GH Sei Kupang diketahui sebesar 16.4 kV pada waktu beban puncak. Nilai ini sudah berada dibawah standar tegangan PLN.


Gambar 18. Simpel SLD Pemasangan Kapasitor di GH Sei Kupang

Pada kasus ini akan digunakan ETAP untuk simulasi jaringan distribusi untuk mengetahui pengaruh perubahan kapasitas kapasitor terhadap level tegangan pada jaringan.

Gambar 19. Model Pemasangan Kapasitor Pada ETAP

Kapasitor pada ETAP dimodelkan dengan melakukan pemasangan kapasitor bank pada GH Sei Kupang, yaitu GH dengan level tegangan yang sudah dibawah standar. Saat kondisi normal (tidak terdapat kapasitor pada sistem) nilai tegangan pada GH Sei Kupang setelah dijalankan simulasi aliran daya adalah 15.82 kV.


Gambar 20. Kondisi Normal GH Sei Kupang

Kapasitas kapasitor akan ditambah secara bertahap hingga tegangan dari bus GH Sei Kupang mencapai nilai standar batas bawah PLN yaitu 18 kV. Tabel 10 merupakan hasil simulasi dari pertambahan nilai kapasitor pada jaringan.

		_				•						
Lokasi					Kapa	pasitor (kVAR)						
LOKASI	0	300	600	900	1200	1500	1800	2100	2400	2700	3000	3300
Tegangan di GH Sei Kupang (kV)	15.82	16.02	16.23	16.43	16.64	16.85	17.07	17.29	17.51	17.74	17.97	18.21
Loss (MW)	4.14	4.12	4.11	4.11	4.10	4.10	4.11	4.12	4.13	4.15	4.17	4.20

Tabel 10. Pengaruh Perubahan Kapasitas Kapasitor Terhadap Tegangan GH Sei Kupang

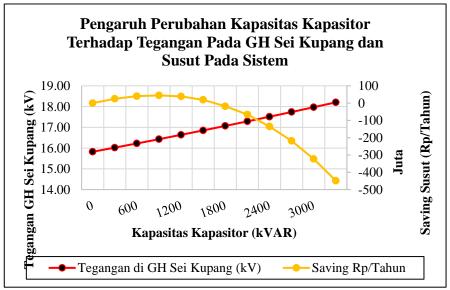
Dari hasil simulasi didapatkan bahwa tegangan mencapai nilai 18.205 kV di GH Sei Kupang ketika dipasang kapasitor dengan kapasitas 3300 kVAR. Selain sebagai perbaikan tegangan pada jaringan, penggunaan kapasitor juga berfungsi sebagai koreksi faktor daya. Faktor daya yang awalnya *lagging*, dikarenakan kompensasi daya reaktif yang negatif dari kapasitor, maka faktor daya bisa mendekati 1. Namun ketika kapasitor yang dipasang terlalu besar maka faktor daya akan menjadi *leading* dan arus reaktif akan kembali pada sistem. Pemasangan kapasitas kapasitor yang lebih dari yang seharusnya ditunjukan pada Tabel 10 ketika susut daya pada sistem yang pada awalnya berkurang, dikarenakan kompensasi daya reaktif, kembali meningkat karena arus reaktif mengalir kembali pada sistem dikarenakan kapasitas kapasitor yang berlebih. Gambar 21 dibawah ini menunjukan visualisasi dari perubahan tegangan dan susut dikarenakan pernambahan kapasitas kapasitor pada GH Sei Kupang.

Gambar 21. Grafik Pengaruh Perubahan Kapasitor Terhadap Tegangan Pada GH Sei Kupang dan Susut Pada Sistem (MW)

Dari Tabel 10 dan Gambar 21 dapat dilihat bahwa pemasangan kapasitor lebih dari 2400 kVAR mengakibatkan susut yang lebih besar dibandingkan dengan tidak dipasang kapasitor pada jaringan. Oleh karena itu pemasangan kapasitor lebih dari 2400 kVAR tidak disarankan untuk dipasang di GH Sei Kupang.

3.2.2. Perhitungan Saving Operasi Pemasangan Kapasitor

Perhitungan susut dari pemasangan kapasitor pada jaringan dapat dilihat pada tabel berikut.


Tabel 11. Perhitungan Saving Susut dari Pemasangan Kapasitor di GH Sei Kupang

*Mengacu ke sur	Saving Rp per tahun (Saving kWh x Harga Rata-Rata Transfer Price Rp/kWh UDI KSKT Maret 2027). Harga rata-rata transfer price Rp 594.17/kWh	Saving kWh per tahun	Saving kWh per bulan (Loss kWh Normal - Loss kWh Dengan Kapasitor	Persentase (%)	Loss (kWh)	Loss (MWh)	Load (MWh)	Periode Waktu (24 jam x 30 hari)	Loss Load Factor	Load Factor	Loss (MW)	Load (MW)	- di iliuniyan	Parameter	
at No: 18104/K				6.07%	1,723,858.33	1,723.86	28,376.70				4.136	54.74	NO.	Kondisi	
IT.00.01/F01030000/202	Rp 25,253,182.68	36,379.13 kWh	3,031.59 kWh	6.05%	1,720,826.74	1,720.83	28,456.60				4.123	54.82	300 kVar		
3 perihal Harga Transfe	Rp 40,187,134.71	57,892.63 kWh	4,824.39 kWh	6.02%	1,719,033.94	1,719.03	28,539.22					4.113	54.90	600 KVAR	
r TSA (Transmission S	Rp 44,758,457.45	64,477.97 kWh	5,373.16 kWh	6.00%	1,718,485.17	1,718.49	28,624.55				4.106	54.99	900 kVar		
service Agreement), da	Rp 38,923,752,27	56,072.63 kWh	4,672.72 kWh	5.99%	1,719,185.61	1,719.19	28,713.67				4.102	55.08	1200 kVar		
n PSA (<i>Power Sales A</i> g	Rp 19,143,619.49	27,577.84 kWh	2,298.15 kWh	5.98%	1,721,560.18	1,721.56	28,805.53				4.102	55.18	1500 kVar	S	
reement) Tahun 2023 o	-Rp18,140,628.84	-26,132.96 kWh	-2,177.75 kWh	5.97%	1,726,036.08	1,726.04	28,901.19	720	0,58	0,72	4.107	55.29	1800 kVar	Setelah Pemasangan Kapasitor	
li Sistem Kalimantan da	-Rp65,990,033.42	-95,063.67 kWh	-7,921.97 kWh	5.97%	1,731,780.30	1,731.78	29,000.67				4.115	55.40	2100 kVar	Kapasitor	
ıri Direktur Manajemen F	-Rp134,979,394.64	-194,448.11 kWh	-16,204.01 kWh	5.98%	1,740,062.34	1,740.06	29,103.98				4.129	55.53	2400 kVar		
Wengacu ke surat No: 18104KIT.00.01/F01030000/2023 perihal Harga Transfer TSA (Transmission Service Agreement), dan PSA (Power Sales Agreement) Tahun 2023 di Sistem Kalimantan dari Direktur Manajemen Pembangkitan PT PLN (Persero)	-Rp218,164,931.11	-314,283.21 kWh	-26,190.27 kWh	5.99%	1,750,048.60	1,750.05	29,211.15				4.147	55.65	2700 kVar		
ersero)	-Rp322,644,730.47	-464,794.33 kWh	-38,732.86 kWh	6.01%	1,762,591.19	1,762.59	29,322.70				4.171	55.79	3000 kVar		
	-Rp448,505,589.98	-646,106.49 kWh	-53,842.21 kWh	6.04%	1,777,700.54	1,777.70	29,439.18				4.201	55.93	3300 kVar		

3.2.2. Perhitungan Saving Operasi Pemasangan Kapasitor

Perhitungan susut dari pemasangan kapasitor pada jaringan dapat dilihat pada tabel berikut.

Tabel 11 merupakan hasil perhitungan saving susut dari sistem ketika ditambahakan kapasitor. Dari hasil perhitungan dapat dilihat bahwa pemasangan kapasitor dengan kapasitas 1800 kVAR (dengan profil tegangan 17.07 kV) dan seterusnya menyebabkan bertambahnya susut pada sistem sehingga terjadi kerugian Rupiah/Tahun karena pemasangan kapasitor. Sedangkan tegangan pada jaringan baru mencapai batas bawah standar PLN ketika kapasitor yang dipasang mempunyai kapasitas 3300 kVAR dengan profil tegangan sistem sebesar 18.21 kV.

Gambar 22. Grafik Pengaruh Perubahan Kapasitor Terhadap Tegangan Pada GH Sei Kupang dan Susut Pada Sistem (Rp/Tahun)

3.2.4. Biaya Investasi Pemasangan Kapasitor

Biaya dari pemasangan kapasitor dengan variasi kapasitas hingga kapasitas 3300 kVAR dapat dilihat pada Tabel 12.

Tabel 12. Biaya Investasi Pemasangan Kapasitor

Kapasitas Kapasitor (kVAR)	Total Biaya Investasi
300	Rp 98,015,758.12
600	Rp 196,031,516.24
900	Rp 294,047,275.36
1200	Rp 392,063,033.48
1500	Rp 490,078,791.60
1800	Rp 588,094,550.72
2100	Rp 686,110,308.84
2400	Rp 784,126,066.96
2700	Rp 882,141,826.08
3000	Rp 980,157,584.20
3300	Rp 1,078,173,342.32

3.3. Kajian Finansial Tiap Opsi Perbaikan Tegangan

Selain melakukan analisis terkait dampak operasi jaringan 20 kV baru dan pemasangan kapasitor terhadap sistem, analisis secara finansial juga perlu dilakukan untuk melihat apakah suatu proyek layak untuk dilaksanakan. Proyek yang layak dapat diidentifikasi jika tingkat pengembaliannya (IRR=Internal Rate of Return) diatas pengembalian yang diharapkan dengan nilai NPV (Net Present Value) positif.

Pada program perbaikan tegangan pada penyulang BTL02 ini, saving dari susut merupakan penghematan yang didapatkan ketika proyek dieksekusi. Saving susut disini berarti berkurangnya biaya yang dikeluarkan untuk transaksi energi listrik, yang awalnya harus mengeluarkan biaya lebih banyak, karena terdapat perbaikan pada sistem mengakibatkan berkurangnya biaya yang dikeluarkan untuk transaksi energi listrik saat memenuhi kebutuhan listrik yang sama.

Estimasi biaya didasarkan pada Kontrak Harga Satuan (KHS) PT PLN (Persero) Unit Induk Distribusi Kalimantan Selatan dan Kalimantan Tengah yang berupa Material Distribusi Utama (MDU), Material non-MDU, dan harga jasa.

Berikut asumsi dasar yang digunakan untuk analisis finansial.

Komponen	Satuan	Nilai	Sumber			
Tingkat Inflasi	%	4	Bank Indonesia			
Tingkat Suku Bunga	%	5.75	Bank Indonesia			
Tingkat Diskonto (Discount Rate)	%	9.24	Estimasi Penulis			
Pajak Penghasilan Badan/	%	22	UU HPP 2021			
PPh Badan	70	22	00 HFF 2021			
PPN	%	11	UU HPP 2021			
			Surat Direktur			
Harga Rata-Rata Transfer Price UID			Manajemen			
KSKT	Rp/kWh	694,17	Pembangkitan PT			
KSK1			PLN (Persero)			
			Tahun 2023			
Masa Operasi	Tahun	25	Asumsi Penulis			
IRR (Internal Rate of Return)	%	10	Estimasi Penulis			

Tahal 13 Acumei Acumei Dacar untuk Kajian Financial

3.3.1. Kajian Finansial Opsi Perbaikan dengan Jaringan 20 kV Evakuasi Daya GI Tarjun

Total biaya proyek dari opsi perbaikan dengan menggunakan jaringan 20 kV dari GI Tarjun ditunjukan pada Tabel 14.

	KE	TOTAL				
URAIAN	MDU	NON MDU	JASA	BIAYA		
	(Rp)	(Rp)	(Rp)	(Rp)		
SUTM	1,152,011,718	172,817,754	165,595,567	1,490,425,039		
SKTM	742,255,315	156,188,493	137,635,444	1,036,079,252		
TERMINASI	-	40,426,200	9,990,000	50,416,200		

369,432,447

1,894,267,033

TOTAL

PPN 11%

Tabel 14. Total Biaya Investasi Opsi Perbaikan dengan Jaringan 20 kV Evakuasi Daya GI Tarjun

2,576,920,491

313,221,010

Dengan menggunakan asumsi parameter finansial yang disebutkan sebelumnya, dan asumsi saving susut (kWh/tahun) dari operasi pertahun dianggap flat, didapatkan performa keuangan dari perbaikan menggunakan jaringan 20 kV Evakuasi Daya GI Tarjun sebagai berikut.

Tabel 15. Hasil Kajian Finansial Operasi Jaringan 20 kV Evakuasi Daya GI Tarjun

Komponen	Satuan	Nilai			
Internal Rate of Return	%	12.55			
(IRR)	70	12,55			
Net Present Value (NPV) –	Dn	852.833.237			
Arus Kas	Rp	832.833.237			
Break Even Point (BEP)	Tahun	9,01			

Dari hasil kajian finansial, didapatkan nilai IRR sebesar 12.55%. Nilai ini lebih besar dari target awal yang ingin dicapai pada proyek yaitu 10%. Selain itu nilai *Net Present Value* (NPV) dari cashflow selama estimasi operasi dari Jaringan 20 kV Evakuasi Daya GI Tarjun adalah Rp 852.833.237. Untuk detail dari hasil kajian finansial dapat dilihat pada lampiran.

3.3.2. Kajian Finansial Opsi Perbaikan dengan Pemasangan Kapasitor

Kajian finansial untuk pemasangan kapasitor akan dilkukan pada kapasitas kapasitor yang memiliki saving (Rp/kWh) yang paling besar mengacu kepada 3.2.2. Perhitungan **Saving Operasi Pemasangan Kapasitor**

Perhitungan susut dari pemasangan kapasitor pada jaringan dapat dilihat pada tabel berikut.

Tabel 11. Oleh karena itu dipilih pemasangan kapasitor dengan kapasitas 900 kVAR sebagai acuan untuk kajian finansial ini.Total biaya proyek dari opsi perbaikan dengan menggunakan kapasitor ditunjukan pada tabel berikut.

Tabel 16. Total Biaya Investasi Opsi Perbaikan dengan Kapasitor

	KEBU	TOTAL				
URAIAN	MDU	NON MDU	JASA	BIAYA		
	(Rp)	(Rp)	(Rp)	(Rp)		
Kapasitor	8.188.929	234.098.484	22.620.042	264.907.455		
PPN 11%	900.782	25.750.833	2.488.204	29.139.820		
Kapasitor +	9.089.711	259.849.317	25.108.246	294.047.275		
PPN 11%	9.009.711	259.049.317	25.106.240	294.047.275		

Dengan menggunakan asumsi parameter finansial yang disebutkan sebelumnya, dan asumsi saving susut (kWh/tahun) dari pemasangan kapasitor pertahun dianggap flat, didapatkan performa keuangan dari perbaikan menggunakan kapasitor sebagai berikut.

Tabel 17. Hasil Kajian Finansial Pemasangan Kapasitor

Komponen	Satuan	Nilai
Internal Rate of Return (IRR)	%	0,27

Komponen	Satuan	Nilai
Net Present Value (NPV) – Arus Kas	Rp	-270.616.062
Break Even Point (BEP)	Tahun	24.35

Dari hasil kajian finansial, didapatkan nilai IRR sebesar 0.27%. Nilai ini lebih kecil dari target awal yang ingin dicapai pada proyek yaitu 10%. Selain itu nilai Net Present Value (NPV) dari cashflow selama estimasi operasi dari kapasitor bernilai Rp -270.616.061. Untuk detail hasil kajian finansial dapat dilihat pada lampiran.

KESIMPULAN DAN SARAN

4.1. Kesimpulan

- a. Terdapat dua opsi yang dapat dilakukan dalam melakukan perbaikan profil tegangan pada penyulang BTL02. Pertama adalah dengan membangun Jaringan 20 kV Evakuasi Daya dari Gardu Induk Tarjun yang saat ini sedang dibangun ke penyulang PLJ03. Kedua adalah dengan memasang kapasitor di GH Sei Kupang yang merupakan GH terdekat di lokasi yang memiliki tegangan jatuh paling parah
- b. Perbaikan tegangan dengan opsi Pembangunan jaringan 20 kV dari Gardu Induk Tarjun ke Penyulang PLJ03 dapat menaikkan tegangan pada GH Sei Kupang dari 15,824 kV menjadi 18,845 kV.
- c. Perbaikan tegangan dengan opsi pemasangan kapasitor dilakukan dengan kapasitor berkapasitas 3300 kVAR dengan perubahan tegangan pada GH Sei Kupang dari 15,824 kV menjadi 18,210 kV
- d. Saving susut dari perbaikan dengan opsi Pembangunan Jaringan 20 kV dari GI Tarjun ke penyulang PLJ03 sebesar 82.108 kWh/bulan atau 985.300 kWh/tahun setara dengan Rp 683.962.466/tahun
- e. Saving susut dari opsi perbaikan dengan pemasangan kapasitor berkapasitas 3300 kVAR tidak dapat dicapai dikarenakan kapasitor terlalu besar sehingga menyebabkan bertambahnya susut pada jaringan meskipun standar nilai tegangan PLN dapat dicapai.
- f. Saving susut dari opsi perbaikan dengan pemasangan kapasitor berkapasitas 900 kVAR sebesar 5.373,16 kWh/bulan atau 64.477,97 kWh/tahun setara dengan Rp 44.758.457,45/tahun. Namun profil tegangan GH hanya dapat mencapai 16,43 kV
- g. Opsi perbaikan dengan Pembangunan Jaringan 20 kV Evakuasi Daya dari GI Tarjun didapatkan nilai IRR sebesar 12,55% dengan arus kas net selama masa operasi 25 tahun didapatkan sebesar Rp 852.833.237, dan break-even point dapat dicapai pada tahun ke-9
- h. Opsi perbaikan dengan kapasitor berkapasitas 900 kVAR didapatkan nilai IRR sebesar 0,27% dengan arus kas net selama masa operasi 25 tahun didapatkan sebesar Rp -270.616.062, dan break-even point dapat dicapai pada tahun ke-24

4.2. Saran

a. Perbaikan dengan opsi Pembangunan Jaringan 20 kV Evakuasi Daya GI Tarjun merupakan opsi perbaikan yang bagus untuk dilakukan dengan indikator mutu tegangan yang sesuai standar PLN dapat dicapai, dengan nilai profil tegangan pada GH Sei Kupang yaitu 18,845

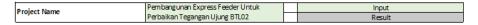
Vol. 1, No. 2, Desember 2023, P-ISSN 2598-2494

- kV, dan secara kajian finansial IRR dari pekerjaan didapatkan 12,55% dengan nilai NPV vang positif.
- b. Perbaikan dengan opsi kapasitor tidak disarankan untuk dilakukan dengan lokasi pemasangan di GH Sei Kupang karena untuk indikator mutu tegangan dengan tidak ada penambahan susut pada sistem dan kajian finansial tidak dapat dipenuhi.
- c. Apabila terdapat beberapa opsi perbaikan tegangan jaringan yang salah satunya terdapat pembangunan jaringan tegangan menegah baru dari sumber listrik terdekat, disarankan untuk mengutamakan opsi perbaikan tersebut

UCAPAN TERIMAKASIH

Penulis mengucapkan terima kasih yang sebesar-besarnya kepada keluarga besar PT PLN (Persero) UP3 Kotabaru, ULP Batulicin dan ULP Satui, atas dukungan dan bantuan selama penelitian ini dibuat. Tulisan ini dibuat dengan harapan untuk dapat memberikan manfaat kepada rekan-rekan semuanya dan dapat menjadi referensi bagi semua unit kerja PT PLN (Persero) yang ada di Indonesia. Penulis menyadari bahwa banyak kekurangan dalamn tulisan ini. Oleh karena itu kritik dan saran dari pembaca sangat kami harapkan.

DAFTAR PUSTAKA


- Kelompok Kerja Standar Distribusi Jaringan Distribusi Tenaga Listrik, Kriteria Disain Enjiniring Konstruksi Jaringan Tenaga Listrik, PT PLN (Persero), Jakarta, 2010
- Kelompok Kerja Standar Distribusi Jaringan Distribusi Tenaga Listrik, Standar Konstruksi Sambungan [2] Tenaga Listrik, PT PLN (Persero), Jakarta, 2010
- Kelompok Kerja Standar Distribusi Jaringan Distribusi Tenaga Listrik, Standar Konstruksi Gardu [3] Distribusi dan Gardu Hubung Tenaga Listrik, PT PLN (Persero), Jakarta, 2010
- Kelompok Kerja Standar Distribusi Jaringan Distribusi Tenaga Listrik, Standar Konstruksi Jaringan [4] Tegangan Menengah Tenaga Listrik, PT PLN (Persero), Jakarta, 2010
- S. Mokred, Q. Lijun, G. Kamara and T. Khan, "Comparison of the Effect of Series and Shunt Capacitor [5] Application in 25kV Radial Power Distribution Network," 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Weihai, China, 2020
- C. W. Brice, "Voltage-drop calculations and power-flow studies for rural electric distribution lines, 34th [6] Annual Conference on Rural Electric Power, Orlando, FL, USA, 1990
- K. C. C. Laconico and R. A. Aguirre, Optimal Load Balancing and Capacitor Sizing and Siting of an Unbalanced Radial Distribution Network, 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 2019
- Bayliss, C., and Hardy, B., Transmission and Distribution Electrical Engineering (4th ed.), Elsevier, Oxford, UK, 2012
- [9] Grainger, John J. and Stevenson, William D., Power System Analysis, McGraw-Hill, Inc, Singapore, 1994
- [10] N. Wight, S. Alahakoon and P. Pledger, Voltage drop and unbalance compensation in long distance medium voltage distribution lines a feasibility study, 2015 IEEE 10th International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 2015
- A. Aksov, M. Celebi and F. M. Nuroğlu, Technical and Economical Analysis of Medium Voltage [11] Distribution Grid of Erzurum on Overload Condition, 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2019
- [12] A. Osama, H. H. Zeineldin, E. -F. Tarek H.M. and E. F. El-Saadany, Optimal Placement and Sizing of Capacitor Banks in Radial Distribution Systems Using the Whale Optimization Algorithm, 2023 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East (ISGT Middle East), Abu Dhabi, United Arab Emirates, 2023
- K. Özen et al., Implementation of 1 kV on LV feeders: A smart alternative to MV line investments to [13] solve voltage drop problems at LV systems, 2017 5th International Istanbul Smart Grid and Cities

Jurnal Energi dan Ketenagalistrikan

Vol. 1, No. 2, Desember 2023, P-ISSN 2598-2494

- Congress and Fair (ICSG), Istanbul, Turkey, 2017
- S. Saini, M. P. Sharma, B. Vyas and M. Gupta, "A case study for loss reduction in distribution networks [14] using shunt capacitors," 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 2016
- P. V. Babu and S. P. Singh, "Capacitor allocation in radial distribution system for maximal energy [15] savings," 2016 National Power Systems Conference (NPSC), Bhubaneswar, India, 2016

LAMPIRAN A: Model Perhitungan Finansial Pembangunan Jaringan 20 kV Evakuasi Daya GI Tarjun

Assumption								
Items	Unit	Value						
Inflation Rate	%	4.0						
Interest Rate	%	5.75						
Discount Rate	%	9.24						
VAT	%	11						
D/E Ratio		0.00						
Repayment Period	years	10						
Corporate Tax	%	22						
Depreciation (Sampai Tahun ke-10)	%	10						
Transfer Price LWBP UID KSKT	Rp/kWh	595.00						
Transfer Price WBP UID KSKT	Rp/kWh	1190						
Harga rata-rata transfer price Rp/kWh UID KSKT	Rp/kWh	694.17						
O&M Cost	%	3.00						

Saving kWh Loss						
Year	kWh					
0	-					
1	985,300					
2	985,300					
3	985,300					
4	985,300					
5	985,300					
6	985,300					
7	985,300					
8	985,300					
9	985,300					
10	985,300					
11	985,300					
12	985,300					
13	985,300					
14	985,300					
15	985,300					
16	985,300					
17	985,300					
18	985,300					
19	985,300					
20	985,300					
21	985,300					
22	985,300					
23	985,300					
24	985,300					
25	985,300					

Finar	ıcial Calculati	on																	
Year	Saving Rp/kWh	O&M Cost	EBITDA	Depreciation	Interest	Debt Repayment	Principal	Debt Balance	EBT	Tax	Net Income	FCFF	FCFE	Inflation Factor	Discount Rate	DSCR	Cumulative Cashflow	Payback Period	NPV
0						-		-				- 2,576,920,388	- 2,576,920,388		1.00		- 2,576,920,388		- 2,576,920,388
1	683,962,466	54,292,784	629,669,681	115,201,172	-	-	-	-	514,468,509	113,183,072	401,285,437	286,084,265	286,084,265	1.00	1.09	N/A	- 2,290,836,123	n/m	261,885,999
2	683,962,466	54,292,784	629,669,681	115,201,172	-	-	-	-	514,468,509	113,183,072	401,285,437	286,084,265	286,084,265	1.04	1.19	N/A	- 2,004,751,857	n/m	239,734,529
3	683,962,466	54,292,784	629,669,681	115,201,172	-	-	-	-	514,468,509	113,183,072	401,285,437	286,084,265	286,084,265	1.08	1.30	N/A	- 1,718,667,592	n/m	219,456,727
4	683,962,466	54,292,784	629,669,681	115,201,172	-	-	-	-	514,468,509	113,183,072	401,285,437	286,084,265	286,084,265	1.12	1.42	N/A	- 1,432,583,327	n/m	200,894,111
5	683,962,466	54,292,784	629,669,681	115,201,172	-	-	-	-	514,468,509	113,183,072	401,285,437	286,084,265	286,084,265	1.17	1.56	N/A	- 1,146,499,061	n/m	183,901,603
6	683,962,466	54,292,784	629,669,681	115,201,172	-	-	-	-	514,468,509	113,183,072	401,285,437	286,084,265	286,084,265	1.22	1.70	N/A	- 860,414,796	n/m	168,346,396
7	683,962,466	54,292,784	629,669,681	115,201,172	-	-	-	-	514,468,509	113,183,072	401,285,437	286,084,265	286,084,265	1.27	1.86	N/A	- 574,330,531	n/m	154,106,917
8	683,962,466	54,292,784	629,669,681	115,201,172	-	-	-	-	514,468,509	113,183,072	401,285,437	286,084,265	286,084,265	1.32	2.03	N/A	- 288,246,265	n/m	141,071,876
9	683,962,466	54,292,784	629,669,681	115,201,172	-	-	-	-	514,468,509	113,183,072	401,285,437	286,084,265	286,084,265	1.37	2.22	N/A	- 2,162,000	n/m	129,139,395
10	683,962,466	54,292,784	629,669,681	115,201,172	-	-	-	-	514,468,509	113,183,072	401,285,437	286,084,265	286,084,265	1.42	2.42	N/A	283,922,266	0.01	118,216,217
11	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	1.48	2.64	-	775,064,617	0.58	185,784,201
12	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	1.54	2.89	-	1,266,206,968	1.58	170,069,756
13	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	1.60	3.15	-	1,757,349,319	2.58	155,684,507
14	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	1.67	3.45	-	2,248,491,671	3.58	142,516,026
15	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	1.73	3.76	-	2,739,634,022	4.58	130,461,393
16	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	1.80	4.11	-	3,230,776,373	5.58	119,426,395
17	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	1.87	4.49	-	3,721,918,724	6.58	109,324,785
18	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	1.95	4.91	-	4,213,061,075	7.58	100,077,613
19	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	2.03	5.36	-	4,704,203,427	8.58	91,612,608
20	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	2.11	5.86	-	5,195,345,778	9.58	83,863,610
21	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	2.19	6.40	-	5,686,488,129	10.58	76,770,057
22	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	2.28	6.99	-	6,177,630,480	11.58	70,276,508
23	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	2.37	7.63	-	6,668,772,832	12.58	64,332,212
24	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	2.46	8.34	-	7,159,915,183	13.58	58,890,710
25	683,962,466	54,292,784	629,669,681		-	-	-	-	629,669,681	138,527,330	491,142,351	491,142,351	491,142,351	2.56	9.11	-	7,651,057,534	14.58	53,909,474
												12.55%	12.55%			N/A		9.01	852,833,237

LAMPIRAN B: Model Perhitungan Finansial Pemasangan Kapasitor Pada Jaringan TM Kapasitas 900 kVAR

Project Name	Pembangunan Kapasitor Untuk Perbaikan	Input
r roject ranie	Tegangan Ujung BTL02	Result

Assumption		
Items	Unit	Value
Inflation Rate	%	4.0
Interest Rate	%	5.75
Discount Rate	%	9.24
VAT	%	11
D/E Ratio		0.00
Repayment Period	years	10
Corporate Tax	%	22
Depreciation (Sampai Tahun ke-10)	%	10
Transfer Price LWBP UID KSKT	Rp/kWh	595.00
Transfer Price WBP UID KSKT	Rp/kWh	1190
Harga rata-rata transfer price Rp/kWh UID KSKT	Rp/kWh	694.17
O&M Cost	%	3.00

Saving kWh Loss								
Year	kWh							
0	-							
1	64,478							
2	64,478							
3	64,478							
4	64,478							
5	64,478							
6	64,478							
7	64,478							
8	64,478							
9	64,478							
10	64,478							
11	64,478							
12	64,478							
13	64,478							
14	64,478							
15	64,478							
16	64,478							
17	64,478							
18	64,478							
19	64,478							
20	64,478							
21	64,478							
22	64,478							
23	64,478							
24	64,478							
25	64,478							

Fina	ncial Calculat	tion																	
Year	Saving Rp/kWh	O&M Cost	EBITDA	Depreciation	Interest	Debt Repayment	Principal	Debt Balance	EBT	Tax	Net Income	FCFF	FCFE	Inflation Factor	Discount Rate	DSCR	Cumulative Cashflow	Payback Period	NPV
0						-		-				- 294,047,275	294,047,275		1.00		- 294,047,275		- 294,047,275
1	44,758,457	8,821,418	35,937,039	21,818,893	-	-	-	-	14,118,146	3,105,992	11,012,154	- 10,806,739	10,806,739	1.00	1.09	N/A	- 304,854,014	n/m	9,892,657
2	44,758,457	8,821,418	35,937,039	21,818,893	-	-	-	-	14,118,146	3,105,992	11,012,154	- 10,806,739	10,806,739	1.04	1.19	N/A	- 315,660,753	n/m	9,055,893
3	44,758,457	8,821,418	35,937,039	21,818,893	-	-	-	-	14,118,146	3,105,992	11,012,154	- 10,806,739	10,806,739	1.08	1.30	N/A	- 326,467,492	n/m	8,289,906
4	44,758,457	8,821,418	35,937,039	21,818,893	-	-	-	-	14,118,146	3,105,992	11,012,154	- 10,806,739	10,806,739	1.12	1.42	N/A	- 337,274,231	n/m	- 7,588,709
5	44,758,457	8,821,418	35,937,039	21,818,893	-	-	-	-	14,118,146	3,105,992	11,012,154	- 10,806,739	10,806,739	1.17	1.56	N/A	- 348,080,969	n/m	6,946,822
6	44,758,457	8,821,418	35,937,039	21,818,893	-	-	-	-	14,118,146	3,105,992	11,012,154	- 10,806,739	10,806,739	1.22	1.70	N/A	- 358,887,708	n/m	- 6,359,230
7	44,758,457	8,821,418	35,937,039	21,818,893	-	-	-	-	14,118,146	3,105,992	11,012,154	- 10,806,739	10,806,739	1.27	1.86	N/A	- 369,694,447	n/m	5,821,338
8	44,758,457	8,821,418	35,937,039	21,818,893	-	-	-	-	14,118,146	3,105,992	11,012,154	- 10,806,739	10,806,739	1.32	2.03	N/A	- 380,501,186	n/m	5,328,944
9	44,758,457	8,821,418	35,937,039	21,818,893	-	-	-	-	14,118,146	3,105,992	11,012,154	- 10,806,739	10,806,739	1.37	2.22	N/A	- 391,307,924	n/m	4,878,198
10	44,758,457	8,821,418	35,937,039	21,818,893	-	-	-	-	14,118,146	3,105,992	11,012,154	- 10,806,739	10,806,739	1.42	2.42	N/A	- 402,114,663	n/m	4,465,579
11	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	1.48	2.64		- 374,083,773	n/m	10,603,233
12	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	1.54	2.89		- 346,052,882	n/m	9,706,365
13	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	1.60	3.15		- 318,021,992	n/m	8,885,358
14	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	1.67	3.45		- 289,991,101	n/m	8,133,795
15	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	1.73	3.76		- 261,960,210	n/m	7,445,803
16	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	1.80	4.11		- 233,929,320	n/m	6,816,004
17	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	1.87	4.49		- 205,898,429	n/m	6,239,476
18	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	1.95	4.91		- 177,867,539	n/m	5,711,714
19	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	2.03	5.36		- 149,836,648	n/m	5,228,592
20	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	2.11	5.86		- 121,805,758	n/m	4,786,335
21	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	2.19	6.40		93,774,867	n/m	4,381,485
22	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	2.28	6.99		- 65,743,976	n/m	4,010,880
23	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	2.37	7.63		- 37,713,086	n/m	3,671,622
24	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	2.46	8.34		- 9,682,195	n/m	3,361,060
25	44,758,457	8,821,418	35,937,039		-	-	-	-	35,937,039	7,906,149	28,030,891	28,030,891	28,030,891	2.56	9.11		18,348,695	0.35	3,076,767
												0.27%	0.27%			N/	Δ	24.35	- 270,616,062

Jurnal Energi dan Ketenagalistrikan

Vol. 1, No. 2, Desember 2023, P-ISSN 2598-2494

LAMPIRAN C: Rencana Anggaran Biaya Pemasangan Kapasitor 900 kVAR

RENCANA ANGGARAN BIAYA

: Pekerjaan Pemasangan Jaringan Untuk Melayani Pasang Baru Evakuasi GI Tarjun Jalur Mandala 1 Feeder

FUNGSI LOKASI : Peningkatan Keandalan 2023 : Batulicin

	URAIAN	SAT	LOK 1	JML	HARGA SATUAN	KE		JUMLAH KEBUTUHAN		
NO.					HARGA SATUAN	MDU	NON MDU	JASA	ANGGARAN Rp	
					Rp	Rp	Rp	Rp		
A	SALURAN UDARA TEGANGAN MENENGAH (SUTM)									
A	MATERIAL DISTRIBUSI UTAMA (MDU)									
1	Konduktor AAACS ; 70mm²	Mtr	189	189	10.261	1,939,329			1,939,329	
<u>-</u>	LA 24 kV; 10kA; Polimer SIR	Set	9	9	694.400	6.249.600			6,249,600	
<u>~</u>	LAZ4 KV, TOKA, FOIIII BI SIK	361	3	<u>J</u>	034,400	0,243,000			0,245,000	
	JUMLAH I					8,188,929	-	-	8,188,929	
	NON MATERIAL DISTRIBUSI UTAMA (NON MDU)									
1	Besi UNP 8 (P 2200 mm x F 45 mm x T 5 mm); (Hotdip	Btg	6	6	626,460	_	3,758,760	-	3,758,760	
	Galvanis Min 70 Micron) Clamp Beugel 5,0" (L 48 mm xT 5 mm); Tanpa Bolt; (Hotdip	9			,		-11		-11.	
2	Galvanis Min 70 Micron)	Bh	3	3	50,235	-	150,705	-	150,70	
	Am Tie Besi L (P 1200 mm xL 70 mm xt 70 mm xT 7 mm) ; (
3	Hotdip Galvanis Min 70 Micron)	Btg	6	6	321,149	-	1,926,894	-	1,926,894	
4	CCO 8T8 (70/150 sqmm - 70/150 sqmm)	Bh	9	9	33,239	-	299,151		299,151	
5	SKAT 8 (150 sqmm); L1	Bh	45	45	93.917	-	4,226,265	-	4,226,26	
	Material Arde 5,5 Mtr ; LA + SKTM ; Tipe Ground Road (Lapis									
6	Tembaga 5/8"); Non Steinles Steel Strip + Yorke	Set	3	3	1,098,376	-	3,295,128	-	3,295,128	
7	Disconnecting Switch 24 kV; 630 A (Manual) / (Outdoor) / (1	Set	3	3	3.480.527	_	10.441.581	_	10,441,58	
	Phase)					-				
8	Capasitor Bank; 3x100kVAR	set	3	3	70,000,000	-	210,000,000	-	210,000,000	
0										
0										
0										
0										
	JUMLAH II					-	234,098,484	-	234,098,484	
	JASA									
1	Pemasangan Capasitor Bank	Set	3	3	5,218,000	-		15,654,000	15,654,00	
2	Pemasangan DS Manual Lkp	Set	3	3	807.089	-		2,421,267	2.421.26	
3	Penarikan AAACS 70 mm²	Gwg	3.78	4	284.712			1.076.211	1,076,21	
4	Pemasangan Pentanahan Arde Dengan Ground Rod 5.5-6 m	Set	3	3	208,596	-	-	625,788	625,78	
<u>-</u>	Pengepresan	Bh	54	54	52.644			2.842.776	2.842.77	
0		-	-							
0										
0										
0										
0										
	JUMLAH III					-	-	22,620,042	22,620,042	
	JUMLAH I + II + III					8,188,929	234,098,484	22,620,042	264,907,455	
	PPN 11%					900,782	25,750,833	2,488,204	29,139,820	
	TOTAL					9.089.711	259.849.317	25,108,246	294.047.275	

LAMPIRAN D: Harga Transfer TSA dan PSA Tahun 2023 di Sistem Kalimantan

: 18104/KIT.00.01/F01030000/2023 Nomor

31 Maret 2023

: 1 Set Lampiran Sifat

Hal

: Segera

: Harga Transfer TSA, dan PSA Tahun 2023 di Sistem Kalimantan Kepada

Yth. 1. GENERAL MANAGER UIP3B

KALIMANTAN

 PLT GENERAL MANAGER UID KALBAR 3. GENERAL MANAGER UID

KALSELTENG 4. GENERAL MANAGER UID KALTIMRA

Sehubungan dengan kebutuhan perhitungan transaksi tenaga listrik untuk pengukuran kinerja unit dan mengacu kepada RKAP PLN 2023, dengan ini ditetapkan Harga Transfer tahun 2023 Sistem Kalimantan sebagai berikut:

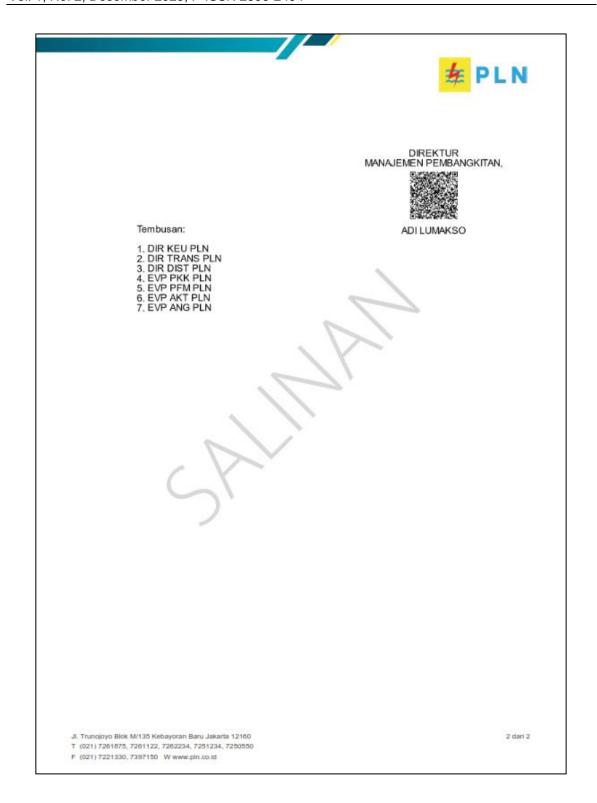
Penetapan Harga Transfer Tahun 2023:

a. Harga Transfer Penggunaan dan Pelayanan Sistem Transmisi (Transmission Service Agreement/TSA) untuk P3B Kalimantan sebagai berikut:

TSA pada Sistem	Harga TSA (Rp/kVA _{Available} -tahun)
Kalbar / Khatulistiwa	328.701
Kalseltengtimra / Interkoneksi	268.170

Harga Dasar Transfer Penjualan Tenaga Listrik (Power Sales Agreement/PSA) ke Unit Induk Wilayah sebagai berikut:

Wilayah		Kalbar	Kalseltengtimra
Harga Kapasitas (Rp/kW.bln)	HK	389.679	466.433
Heres Franci (De 8486)	HELWBP	895	595
Harga Energi (Rp/kWh)	HEWAR	1.791	1.190


- 2. Pedoman berkaitan dengan poin 1 adalah:
 - a. Untuk harga PSA diberlakukan Penyesuaian Harga Transfer setiap bulan dengan formula dan penjelasan sesuai Lampiran 1
 - b. Rangkuman Transfer Price Sistem Kalimantan Tahun 2023 sebagaimana Lampiran 2
 - c. Mekanisme Transaksi yang diterapkan pada Sistem Kalimantan sebagaimana Lampiran 3

Demikian disampaikan, atas perhatian dan kerjasamanya diucapkan terima kasih.

Jl. Trunolovo Blok M/135 Kebayoran Baru Jakarta 12160

T (021) 7261675, 7261122, 7262234, 7251234, 7250550 F (021) 7221330, 7397150 W www.pin.co.id

1 dari 2

LAMPIRAN E: BIODATA PENUILIS

Nama Afrias Evindra

Tempat, Tanggal Lahir : Batusangkar, 6 April 1997 NIP/Nomor Test 2301/RBBPLN/S1-ELE/00032 (OJT) Officer Perencanaan dan

Jabatan Saat Ini Evaluasi Sistem Distribusi

PT PLN (Persero) UID Kalselteng, Unit Kerja PT PLN (Persero) UP3 Kotabaru

E-mail afriase@gmail.com

S1 Teknik Tenaga Listrik Pendidikan Terakhir Institut Teknologi Bandung

Nama Abdul Azis

Tempat, Tanggal Lahir Tarakan, 16 April 1993

NIP 93163708ZY

Unit Kerja

Jabatan Saat Ini Team Leader Perencanaan Sistem

> PT PLN (Persero) UID Kalselteng, PT PLN (Persero) UP3 Kotabaru

E-mail abdul1111azis@gmail.com

S1 Teknik Elektro Pendidikan Terakhir Universitas Brawijaya

Nama Aris Aprianto

Tempat, Tanggal Lahir Surabaya, 13 April 1990

9012489ZY

Jabatan Saat Ini Assistant Manager Perencanaan

PT PLN (Persero) UID Kalselteng, Unit Kerja PT PLN (Persero) UP3 Kotabaru

E-mail aris.aprianto1304@gmail.com

D4 Teknik Elektro Industri

Pendidikan Terakhir Politeknik Elektro Surabaya

